Section 6.1 - Law of SINES - Ambiguous Case

The SSA case (the ambiguous case)

Why is this ambiguous?

In Geometry, you learned that you could prove that two triangles were congruent using the following methods:

SSS

ASA

SAS

AAS

However, when you were given two sides and the NON-included angle (SSA) then, depending on the information given, you could construct 0, 1, or 2 triangles! Here is what they might look like:

So this means that **not just one** unique triangle can necessarily be created.

Now, how do we figure out if there are 0, 1, or 2 triangles with a SSA problem? Start by drawing a triangle with $m\angle A=30^\circ$ and b=10.

What do we know about side "a"?

Now: If
$$a < 5 \rightarrow$$

If $a > 10 \rightarrow$
If $5 < a < 10 \rightarrow$

Section 6.1 - Law of SINES - Ambiguous Case

Ex. 2) In \triangle ABC, m<A = 30°, a = 4, and b = 12. Solve the triangle for all the missing sides and angles.

Ex.3) In \triangle ABC, m<A = 20°, a = 12, and b = 10. Solve the triangle for all the missing sides and angles.

Ex.4) In \triangle ABC, m<A = 30°, a = 6, and b = 12. Solve the triangle for all the missing sides and angles.

Precalculus CP 1 Page 2 of 4

Section 6.1 – Law of SINES – Ambiguous Case

Ex.6) In \triangle ABC, m<A = 85°, a = 15, and b = 25. Solve the triangle for all the missing sides and angles:

Law of Sines: Applications!

1) A telephone pole tilts AWAY from the sun at a 7° angle from the vertical, and it casts a 27-foot shadow. The angle of elevation from the tip of the shadow to the top of the pole is 52° . How tall is the pole?

Precalculus CP 1 Page 3 of 4

Section 6.1 – Law of SINES – Ambiguous Case

2) Observers 2.32 miles apart see a hot-air balloon directly between them but at the angles of elevation shown in the figure. Find the altitude of the balloon:

Precalculus CP 1 Page 4 of 4